

Population genomics of anadromous sea lamprey across its distributional range

Eleana Karachaliou (PhD Student, University of Manitoba) Supervisors: Margaret F. Docker, Colin Garroway (University of Manitoba)

The lab...

- Invasive sea lamprey population genomics
- Anadromous sea lamprey population genomics
- Sex determination in invasive sea lamprey
- Transcriptomics for genetic control

Current work

Reconstructing anadromous sea lamprey evolutionary history - implications for management & conservation

Eleana Karachaliou^{1*}, Colin Garroway¹, Phil Grayson¹, Guillaume Evanno², Margaret F. Docker¹

¹ Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
 ² INRA, UMR 0985 Ecologie et Sante des Ecosystemes, Rennes 35042, France

Background

- Anadromous sea lamprey populations of conservation concern in their native range on both sides of the Atlantic Ocean
- Genetic data can be used to uncover the evolutionary processes that gave rise to modern demography
- Informing management & conservation strategies
- Conservation of native sea lamprey populations

Mitochondrial DNA markers (Genner et al. 2012):

- Accumulation of genetic diversity up to 125.000 years ago in European, and up to 500.000 years ago in North American sea lamprey
- East Atlantic/European population lower genetic diversity and effective population size
- <u>Scenario 1</u>: Divergence early in evolutionary history prior to loss of shared genetic diversity followed by an environmentally-driven bottleneck in Europe ~125.000 years ago (also supported by Almada et al. 2008)
- <u>Scenario 2:</u> Colonization of Europe by North American migrants during the last 150.000 years

From genetics to genomics & a large scale sample collection for a deeper understanding of sea lamprey demography and population structure

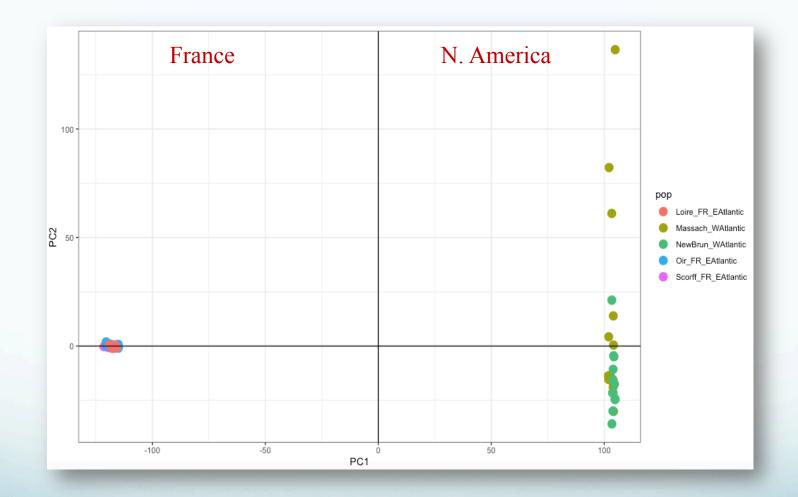
Objectives

- Model evolutionary trajectory on a historic time scale
- Time the population split between North American and European coasts
- Estimate effective population size through time

Methods

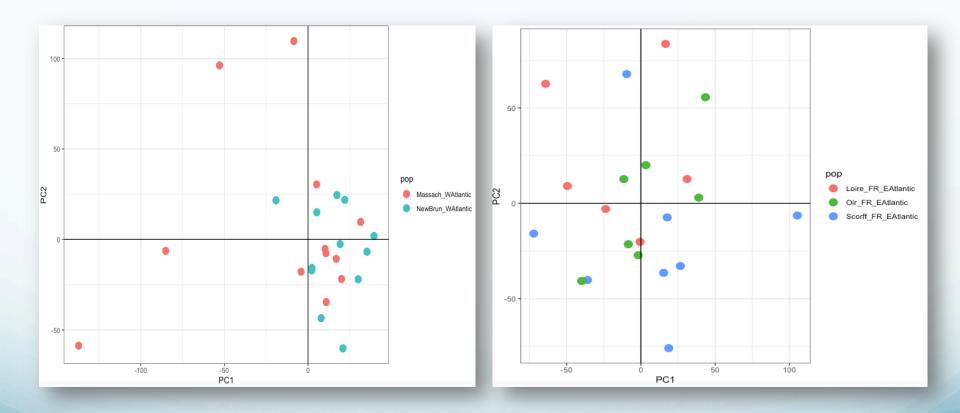
Sequencing

- 45 anadromous sea lamprey samples
- West Atlantic: 24 specimens from New Brunswick (Richibucto River) & Massachusetts (Connecticut River)
- East Atlantic: 21 specimens from France (Rivers Scorff - 8, Oir - 7, Loire – 6)
- Whole-genome sequencing of ~7X read depth
- Annotated sea lamprey genome (Smith et al. 2018) as a mapping reference
- ~ 8.000.000 variants after filtering



Population Genetic Analysis

Fst estimates (Weir and Cockerham 1984) were used as a measure of between population genetic differentiation


- Significant genetic structure between East and West Atlantic coasts
- No significant genetic structure between North American populations (Massachusetts & New Brunswick) or between French populations (Rivers Oir, Loire & Scorff)

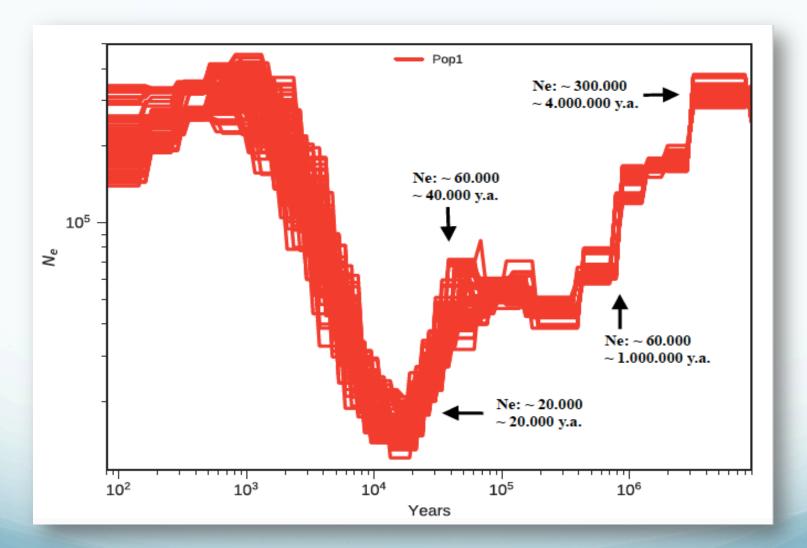
PCA plot of SNPs for whole dataset

PCA plot of North American populations

PCA plot of European populations

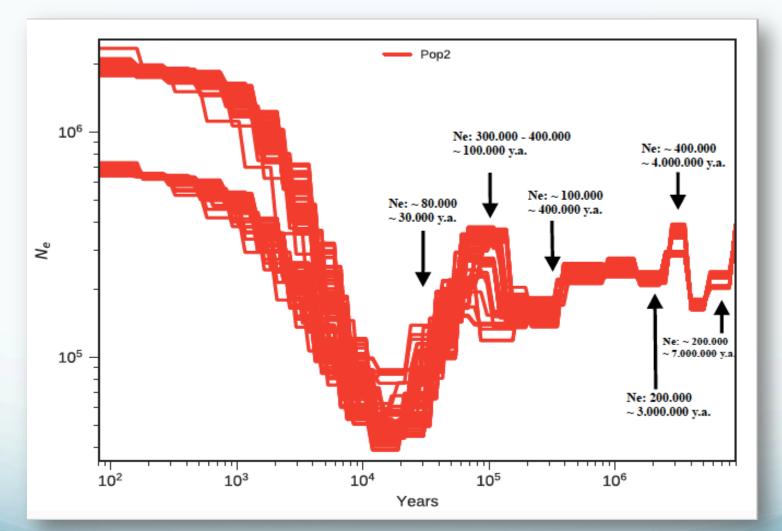
SMC++

- Sequentially Markovian coalescent approach SMC++ as seen in Terhorst et al. (2017)
- Uses rates of coalescence to infer effective population size across time
- Estimates time to most recent common ancestor across segments of the genome taking into account linkage disequilibrium
- 10 samples from French East Atlantic population & 10 samples from North American West Atlantic population



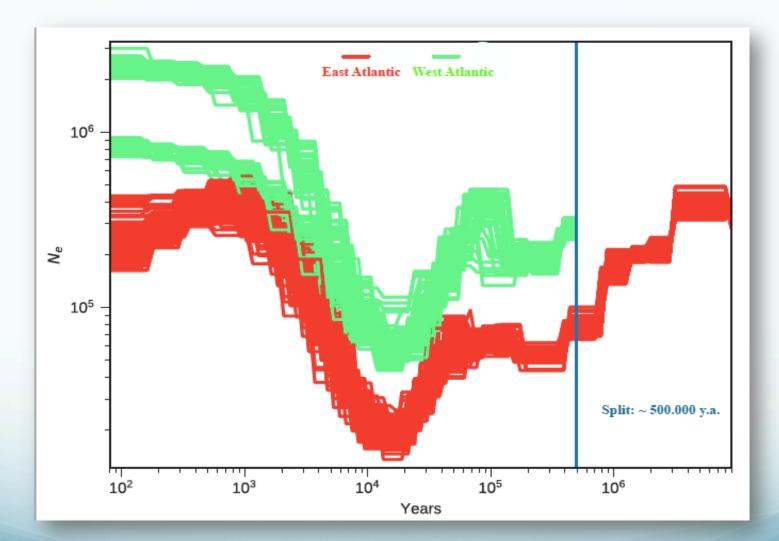
Preliminary results

Mutation rate

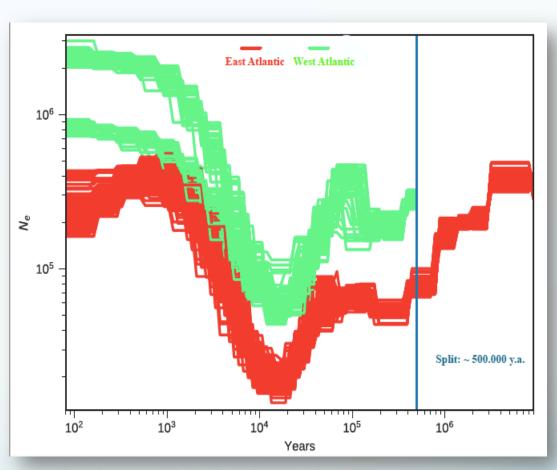

- Per generation mutation rate (per base pair) important for running models
- Expected to be between ~10⁻⁸ (Nikolic et al. 2019) ~ 10⁻⁹ (Genner et al. 2012, Kuraku & Kuratani 2006)
- Anadromous sea lamprey mutation rate?

East Atlantic Population - France (Per generation mutation rate: 10⁻⁹ for 20 sample subset)

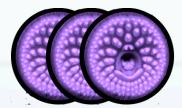
Going back in Time →


West Atlantic Population – North America (Per generation mutation rate: 10⁻⁹ for 20 sample subset)

Going back in Time →


Split

(Per generation mutation rate: 10⁻⁹ for 20 sample subset)


Going back in Time →

- Population split time estimated at ~500.000 years ago
- E. Atlantic (France): Ne ~ 20.000
 W. Atlantic(N.America): Ne ~ 80.000
- W. Atlantic Ne > E. Atlantic Ne
- Colonization of Europe by North American migrants?
- Implications for conservation?
- Interpretation in regards to other diadromous species population splits in the North Atlantic, connection to past climatic events

Future work

Fine-scale population structure of anadromous sea lamprey & signals of adaptation

Objectives

- Finer scale population structure and connectivity within and between East & West Atlantic coasts
- Signals of adaptation and their relation to environmental/ human caused variables
- Interpretation of data in regards to localized sea lamprey management & conservation

Sample set

Already have

Seeking

Collaboration underway

Email: karachae@myumanitoba.ca

To be continued...

Acknowledgements

- **Funding:** Great Lakes Fishery Commission, Faculty of Science Research Chair Program (University of Manitoba), Faculty of Science Field Work Support Program (University of Manitoba), Science Enhancement of Grant Stipends Program (University of Manitoba)
- Anadromous sea lamprey samples: Ted Castro-Santos (U.S. Geological Survey), Mike Wilkie (Wilfrid Laurier University), Steve Coghlan (University of Maine), Guillaume Evanno (INRA), Magnús Jóhannsson & Benóný Jónsson (MFRI), Jan Baer (LAZBW), Fiona Bracken (University College Dublin), Catarina Mateus (Universidade de Évora), Thomas Evans (St. Mary's College of Maryland), Michael Fisk & Jeremy McCargo (NC Wildlife Resources Commission), Gabriela M. Hogue (North Carolina Museum of Natural Sciences), Mikael Svensson (SLU), Elisabeth Thysell (Länsstyrelsen i Hallands län)
- Phil Grayson, Arfa Khan, Matthew Thorstensen, Jaanus Suurväli